SiteHeart    SiteHeart




Региональные представители:

Подробнее...

2.4.3 Топология типа «Шина».

Очень часто на территории «необъятной» встречаются небольшие населенные пункты (деревня, село и проч.), представляющие собой одну или несколько параллельно идущих длинных улиц. «Дерево» и «звезду» в таких населенных пунктах развёртывать нет смысла: это неудобно и дорого. Единственный выход – «шина».

«Шина» в GEPON-сетях развёртывается на одном волокне на каждый EPON порт OLT с использованием каскада сварных делителей 1х2 с процентным соотношением мощности выходных сигналов. При этом, вход первого делителя подключается к PON-порту OLT, а остальной каскад строится по принципу «большая мощность – в линию», то есть большая мощность выходного сигнала поступает в магистральную линию и питает весь дальнейший каскад делителей, а меньшая выходная  мощность отводится для подключения абонента.

Однако, как показывает практика, делать одно ответвление для одного конкретного абонента неудобно. Во-первых, увеличивается количество сварок на магистральном волокне, что снижает качество сигнала, особенно на последних участках каскада. Во-вторых, возрастает сложность включения нового абонента в центр уже существующего каскада: при включении будут производиться сварные работы, что приведёт к отсутствию подключения у абонентов в нижестоящем каскаде. Кроме того, нарушится общая схема затухания в линии, что может отрицательно сказаться на качестве сигнала у последних абонентов в каскаде.

Выход из этой ситуации состоит в комбинировании сварных делителей 1х2 с процентным соотношением мощности выходных сигналов, и планарных делителей 1х2, 1х4 и 1х8 (Рисунок 11).

топология PON типа «шина»

Рисунок 13 – топология PON типа «шина»

 

При этом сохраняется шинная топология, но ответвление сигнала идет не на одного абонента, а на группу абонентов, которые могут быть расположены в радиусе 200 и более метров от планарного делителя.

Данная схема удобна тем, что при грамотном планировании сеть становится легко масштабируемой, и включение нового абонента производится «в три шага»: прокладка патч-корда внешнего исполнения от планарного делителя до абонента, подключение патч-корда в делителю, подключение патч-корда к абонентской ONU.

Кроме того, топологию типа «шина» удобно использовать в случаях, когда улицы в населённых пунктах достаточно ёмкие с позиции числа абонентов, и в то же время имеют достаточно длинную протяжённость. В этом случае, более «близкие» к головной станции OLT абоненты обслуживаются одной шиной (одним волокном и одним PON-портом OLT), более удалённые – другой шиной.

Расчеты и практика показали, что наибольшая эффективность топологии типа «шина» достигается при комбинировании сварных делителей 1х2 и планарных делителей 1х4 и 1х8. Для достижения одинакового стабильного сигнала на всех ONU, в каскаде должны быть установлены сварные делители 5%/95%, 10%/90%,  20%/80%, 30%/70%, 40%/60% и 50%/50%.
Ниже представлены расчёты всех «шин» и рисунки, поясняющие детали их построения. На каждый вариант «шины» представлено две таблицы. Первая таблица включает в себя расчёты с учётом механических соединений типа SC/UPC-SC/UPC на всех выходах сварных делителей (Рисунок 14). Вторая таблица предполагает«вваривание» FBT делителя в линию, а соединение между «абонентским» ответвлением и абонентским PLC сплиттером осуществляется с механическим способом (Рисунок 15).

Правила «чтения» таблиц следующие: по строкам расположены точки деления (муфты, боксы, ответвления – как хотите), по столбцам – элементы этих самых точек деления.

FBT делители в таблицах имеют два выхода (FBT 1×2 Out1 и FBT 1×2 Out2). FBT 1×2 Out2 ВСЕГДА имеет большую выходную мощность (меньшее затухание) и соединяется (или сваривается) с магистральным волокном. FBT 1×2 Out1 соединяется или напрямую с ONU, или со входом PLC делителя (PLC 1xNIn).

Включение сварного делителя в магистральную линию с использованием механических соединителей

Рисунок 14 – Включение сварного делителя в магистральную линию с использованием механических соединителей

 

Включение сварного делителя в магистральную линию без использования механических соединителей

Рисунок 15 – Включение сварного делителя в магистральную линию без использования механических соединителей

 

Механические соединения между абонентским выходом FBT и входом абонентского PLC необходимы для локализации вредоносного излучения, которое может привести к выходу из строя всей пассивной сети (ONU «подвисла»и непрерывно излучает, конкуренты «воткнули» медиаконвертер в один из выходов планарного делителя и «ослепили» приёмник OLT и проч.).

Классическая «шина».

Как уже было сказано выше, классическую «шину» (Рисунок 14) в PON строить практически не имеет смысла, так как один SFPOLT будет обслуживать менее 64-х абонентов по причине больших потерь, которые вносит в магистральную линию каскад сварных делителей 1х2 (Таблица 7, Таблица 8).

Кроме того, даже 20 раз разделать кабель и провести сварочные работы – уже накладно, а ведь нужно еще учитывать качество сварок, проверять каждую точку, да и искать проблему в случае неполадок будет сложновато (в конце концов, пожалейте своих сварщиков/монтажников!).

Классическая PON-«Шина»

Рисунок 16 – Классическая PON-«Шина»

Как видно из таблицы 7, строить классическую «шину», используя механические соединения на магистральной линии, не имеет смысла: «шина» будет содержать в себе всего 27 абонентских устройств при остаточном оптическом бюджете  в 1,2дБ, что хватит всего на 3-4 километра идеального волокна.

Таблица 8 более позитивна (целых 44 ONU на один SFPOLT при запасе мощности в 3.5дБ!), однако, она не показывает динамику развития шинной топологии при включении в уже готовую сеть нового абонента. А включение, как уже говорилось выше, может быть достаточно проблематичным, особенно в середине работающей «шины».

«Шина» с делением на два.
Для улучшения характеристик классической «шины», её (классическую «шину») можно скомбинировать с планарными делителями 1х2 (Рисунок 15). Это уменьшит число FBT делителей в каскаде на магистральной линии и позволит (в некоторых случаях) оставить запас для быстрого и безопасного подключения новых абонентов.

PON-«Шина» с делением на два

Рисунок 15 – PON-«Шина» с делением на два

Расчёты иллюстрируют таблицы 9 и 10.

Как видно из таблицы 9, использование механических соединителей на магистральной линии отрицательно сказывается на качество сигнала (максимум 42 ONU при остаточном оптическом бюджете в 1,25дБ).

Без механических соединителей схема работоспособна и имеет запас мощности 3дБ. Можно строить!

«Шина» с делением на четыре.
С помощью комбинации планарных и сварных делителей 1х2 были улучшены и качество сигнала, и масштабируемость сети. Для расширения масштабируемости можно использовать комбинации FBT 1х2 + PLC 1×4 (Рисунок 18).

– PON-«Шина» с делением на четыре

Рисунок 18 – PON-«Шина» с делением на четыре

Как и в предыдущих случаях, расчеты – в таблицах (Таблица 11 и Таблица 12).

При использовании механических соединителей на магистральной линии все 64 ONU «помещаются» в оптический бюджет, при этом остаётся еще 1,5дБ на рост сети вглубь. Если отказаться от механических соединителей, то остаётся минимум 4дБ, что является достойным показателем как для роста сети, так и для различного рода непредвиденных потерь.

«Шина» с делением на восемь.
Дабы список «шин» был максимально полным, вниманию читателей представляется последняя комбинация FBT и PLC делителей для «шины»: FBT 1×2 + PLC 1×8 (Рисунок 19, таблица 13 и таблица 14).

PON-«Шина» с делением на восемь

Рисунок 19 – PON-«Шина» с делением на восемь

Как видно из таблиц, показатели у «шины с делением на 4» и у «шины с делением на 8» практически идентичны, однако, «шина с делением на 4» без использования механических соединителей имеет больший запас мощности (4дБ против 3,4дБ).

Стоит озвучить тот факт, что ни одна из вышеперечисленных «шин» не претендует на 100% удобство использования – всё зависит от местности, на которой эта «шина» будет строиться. Комбинировать топологию типа «шина» можно любыми способами. Выбор за инженерами, которые будут строить и обслуживать будущую пассивную сеть.

Отдельно стоит заметить, что выбор FBT делителей для всех представленных шинных топологий не является эталонными показан лишь в качестве примера – в процессе проектирования инженером может быть обнаружена более удачная комбинация сварных делителей в магистральном каскаде.

На этом обзор основных топологий пассивных сетей можно считать законченным. Весь спектр возможных топологий рассмотреть нет смысла – вариаций хватит на двухтомник. Главное – уловить суть и экспериментировать.

 

<< Древовидная топология       Использование механических соединений в PON >>