Глава 1.Что такое DWDM, отличия DWDM от CWDM.

Почувствуй себя магистралом (Украина).

(автор Игорь Никишин инженер копании IC-Line)

В последнее время современным магистралам (современным с большой буквы С) перестало хватать стандартных возможностей систем уплотнения как по дальности работы и количеству одновременно используемых каналов, так и по общей пропускной способности системы и возможностям расширения систем уплотнения. В Украине на сетевую арену активно стала выходить технология DWDM, при том как в качестве магистральной системы, так и в качестве локальной системы уплотнения.

Не так давно одному нашему украинскому провайдеру (пальцем просили не показывать, иначе нас сильно ругать будут) потребовалось прокинуть несколько десятков «ЖЭ» на 162 километра (по одному волокну) с желанием в будущем добавить в эту систему еще несколько тех же десятков «ЖЭ». Понятное дело, что «грэйдить» вширь и не бояться того, что лямбды внезапно закончатся, можно только имея DWDM (ну, или очень толстый и очень чёрный, а еще очень длинный и очень многожильный кабель). А если учесть расстояние, на которое нужно доставить гигантское количество пакетов одним пролётом (без регенерации «в поле»), то выбор DWDM является единственно верным и правильным решением.

Чтобы пробить такое серьезное расстояние одним пролётом, было принято решение спроектировать линию, которая включает в себя помимо стандартных мультиплексоров/трансиверов/коммутаторов еще и усилители мощности, компенсаторы дисперсии и красно-синие делители.

 

Расчеты, произведенные при проектировании системы:

- чувствительность трансиверов к дисперсии (A-Gear SFP+ DWDM 80LC и A-Gear XFP DWDM 80LC) – 1600пс/нм;

- трасса на волокне G.652D, дисперсия в волокне 17пс/(нм*км);

- суммарный показатель дисперсии на трассе 162км: 17пс/(нм*км) * 162км == 2754пс/нм;

- превышение нормы дисперсии: 2754пс/нм – 1600пс/нм == 1154пс/нм – принято решение поставить компенсатор дисперсии A-Gear DMC-FC120 (компенсирует полностью дисперсию в 120км волокна, суммарный показатель дисперсии: -2001пс/нм на длине волны 1545нм, длина волокна в компенсаторе 12,3км);

- бюджет потерь в линии: (162км + 12,3км) * 0,3дБм/км == 52,29дБм;

- оптический бюджет трансиверов (A-Gear SFP+ DWDM 80LC и A-Gear XFP DWDM 80LC) – 26дБм;

- превышение нормы затухания: 52,29дБм – 26дБм == 26,29дБм – принято решение поставить EDFA усилитель A-Gear BA4123 (чувствительность (-10)дБм, максимальная выходная мощность 23дБм) и предусилитель A-Gear PA4325 (чувствительность (-30)дБм, максимальная выходная мощность (-5)дБм).

 

Итогом стала реально работающая система, стабильная, как сам мир, дальнобойная – не всякая птица долетит, расширяемая, и вообще, самая лучшая. Фото этой системы представлена ниже, а еще ниже мы решили написать небольшой обзор существующих на сегодня DWDM комплектующих, методы их включения, терминологию – постарались охватить всё, что есть по DWDM.

На фото видно (сверху-вниз): коммутатор с трансиверами, два усилителя мощности (бустер и предусилитель), DWDM мультиплексор, снова коммутатор с трансивером и в самом низу (серое, почти не видно) – компенсатор дисперсии. Такой набор оборудования стоит в точке А и в точке Б (точки тоже просили не называть, грозя в телефон толстым кожаным армейским ремнём). Имея такой относительно небольшой и недорогой набор оборудования, легко и просто прострелить 162 километра, что и было достигнуто.

 

 На этой оптимистической ноте вводная часть подходит к концу, а мы начинаем методичный разбор технологии, ставшей «магистральным флагманом» современного мира сетестроения.

 

1. Что такое DWDM, отличия DWDM от CWDM.

Для тех, кому недостаточно пропускной способности CWDM систем (180Гбит/с - крайний максимум), существует два варианта утоления «траффикового аппетита»: наращивать количетсво волокон (что обычно связано с землекопами, столболазами и вообще прошлый век) или использовать более «продвинутую» технологию уплотнения – DWDM.

 

DWDM (англ. Dense Wavelength Division Multiplexing – плотное волновое мультиплексирование) – технология уплотнения информационных потоков, при которой каждый первичный информационный поток переносится посредством световых пучков на разных длинах волн, а в оптической линии связи находится суммарный групповой сигнал, сформированный мультиплексором из нескольких информационных потоков.

 

Заумно. Попробуем разобраться. По аналогии с CWDM (для тех кто в курсе), DWDM – такая же система уплотнения, физически состоящая из устройств, генерирующих информационный поток (медиаконвертеры, маршрутизаторы… ну, Вы сами в курсе) трансиверов (приемо-передатчиков, создающих информационный поток на разных длинах волн невидимого для глаза ИК-излучения), мультиплексоров (устройств, создающих/разделяющих групповой световой сигнал) и оптического волновода (оптоволоконный кабель). Кроме того, в состав DWDM входит группа компонент, предназначенных для усиления/восстановления группового светового сигнала, но, дабы все шло последовательно, об этом будет глубоко ниже.

 

Сразу определимся со словами, которыми будем оперировать. Каналом в данной статье будем называть информационный поток в одну сторону (одна сторона «говорит» информационный поток, другая этот самый поток «слушает»). Канал располагается на единственной для него несущей, имеющей конкретно определенную длину волны (или частоту). Но, как известно, полноценную Связь невозможно выстроить между парой абонентов, один из которых глухой, а второй – немой. Поэтому для создания одной полноценной линии связи необходимо использовать два физических  канала, и эту связку будем именовать «полноценный дуплексный канал».

 

Итак, DWDM и CWDM занимаются одним и тем же – уплотнением. В чем же различие? А различие в частотной сетке (или в длинах волн несущих, кому как удобнее) несущих первичных информационных потоков (каналов). И в диапазонах работы самого группового сигнала.

 

Диапазон работы и частотная (волновая) сетка. Очередные малопонятные слова, в значениях которых попробуем разобраться. Что такое длина волны? Представим себе синусоиду. Так вот, длина волны – это расстояние между двумя соседними пиками синусоиды. Обычно длина волны обозначается греческой буквой λ (лямбда). Наглядно показано на рисунке ниже:

Рисунок 1.1 – Длина волны.

        Рисунок 1.1 – Длина волны.

В стандарте CWDM излучение удобно мерять в длинах волн: 1550нм, 1310нм и проч. (нанометры – 10-9 метра!). Удобно, в первую очередь, потому, что числа целые. В стандартных CWDM системах расстояние между двумя соседними несущими (каналами) составляет 1610 – 1590 == 20нм (тоже целое! Ну, удобно же!).

 

Теперь рассмотрим эту же ситуацию со стороны частотного плана, для начала уяснив, что такое частота. Частота – это количество полных колебаний (от пика до пика) электромагнитной волны за секунду (обозначается в Герцах, или Гц). Для простейших расчетов можно рассматривать частоту как скорость света, делённую на длину волны. Рассмотрим информационных поток на несущей 1550нм, его частота примерно равна 300000000/0,00000155 == 193548387096774 Гц, или 193548 ГГц (Гигагерц!). а расстояние между соседними несущими будет 300000000/0,00000020 == 1500000000000000 Гц, или 1500000 ГГц. Совсем неудобно – много цифр и непонятно.

 

 На сегодняшний день CWDM системы работают в диапазоне 1270нм-1610нм, представляя в нем 18 отдельных каналов (1270нм, 1290нм, 1310нм … 1590нм, 1610нм). Но в DWDM все обстоит немного по-другому.

 

DWDM системы работают в двух диапазонах, нарезанных для CWDM систем, в именно: диапазон С (C-Band) и диапазон L (L-Band). Диапазон C находится в пределах от 1528.77нм (канал С61) до 1577.03нм (канал C01), а диапазон L находится в пределах от 1577.86нм (канал L100) до 1622.25нм (канал L48).  Цифры уже пугают, а если еще учесть тот факт, что волновая сетка неравномерна (то есть, расстояние между двумя соседними каналами не всегда одинаковое – от 0.5нм до 0.8нм), то проще запутаться, чем разобраться. Именно поэтому в DWDM системах используется наименование диапазона и нумерация канала в этом диапазоне (например, C35 или L91). Наглядно все обычные каналы DWDM системы представлены на рисунке 1.2, данные по частотам и длинам волн представлены в таблице 1.1:

 C и L диапазоны DWDM системы в общем диапазоне CWDM-систем

Рисунок 1.2 – C и L диапазоны DWDM системы в общем диапазоне CWDM-систем. 

обычная 100-гигагерцовая DWDM сетка

 Таблица 1.1 – обычная 100-гигагерцовая DWDM сетка.

 

Тут сразу следует сделать несколько оговорок.

Во-первых (и это важно для дальнейшего понимания!), диапазон С условно разделен на два «цветовых диапазона» - синий (1528нм-1543нм) и красный (1547нм-1564нм). Зачем делить – об этом в последующих статьях, сейчас просто важно отметить для себя, что деление существует.

 

 Во-вторых, L-диапазон только начинает использоваться, и не все производители могут позволить себе сделать оборудование для L-диапазона (таблица 1.1, помечено синим, в таблице отсутствуют каналы L48-L65).

 

В-третьих, в подписи к таблице фигурирует слово «обычная» - а это значит, что должны быть еще и  «необычные» сетки. И они действительно есть.

 

Как мы выяснили выше, по длинам волн различать DWDM каналы неудобно. А вот по частотам – очень даже, и, если внимательно присмотреться к таблице 1.1, то видно, что разница между двумя соседними каналами всегда равна 100ГГц. И, если рассматривать диапазон C (на данный момент освоенный большинством производителей DWDM систем), то можно вывести суммарное количество каналов в нем – 61 канал. Сразу оговоримся, что, как и в CWDM системах, каждый канал – это информационный поток в одну сторону, а значит, для полноценного обмена данными их необходимо два (30 полноценных дуплексных канала в диапазоне C и 26 – в диапазоне L, всего – 56 полноценных дуплексных канала).

 

Кроме обычной 100-гигагерцовой сетки используют 200-гигагерцовую сетку (нечетные каналы С-диапазона). Это связано с тем, что некоторое количество производителей DWDM оборудования не способно производить мультиплексоры для 100-гигагерцовой сетки, т.к. комплектующие для нее достаточно дорогие и должны быть более высокого качества относительно 200ГГц систем. В данной схеме уплотнения присутствует 31 однонаправленный  канал связи или 15 полноценных дуплексных каналов.

 

Очень редко (ну ооооочень редко) используются DWDM системы уплотнения с 50-гигагерцовой сеткой. Это значит, что между двумя соседними основными каналами обычной 100-гигагерцовой сетки расположен дополнительный подканал. Такие каналы именуются Q и H: Q – подканалы в диапазоне L (например, Q80 – частота 188050ГГц, длина волны 1594.22нм), H – подканалы в диапазоне C (например, H23 – частота 19230ГГц, длина волны 1558.58нм). В таких системах уплотнения в диапазоне C находится 61 основной канал и 61 дополнительный, всего – 122 канала. В диапазоне L – 53 основных и 53 подканала, всего – 106 каналов. Суммарная мощность == 122+106 == 228 однонаправленных каналов, или 114 полноценных дуплексных канала связи! Это много. Очень много. Но очень и очень дорого, и автор не встречал упоминаний о проектах с полной загрузкой DWDM системы с 50-ГГЦ сеткой.

 

Подведем итоги: 

 - «облегченный вариант» DWDM системы имеет 200-гигагерцовую сетку и способен обеспечить 15 полноценных дуплексных канала в диапазоне C, оставив при этом место еще и для 15 CWDM каналов (1270нм-1510нм, 1590нм, 1610нм);

 

- стандартная DWDM система имеет 100-гигагерцовую сетку и способна обеспечить 30 полноценных дуплексных канала в диапазоне C и 26 полноценных дуплексных канала в диапазоне L, при этом также оставив место еще и для 15 CWDM каналов (1270нм-1510нм, 1590нм, 1610нм);

 

- полная DWDM система имеет 50-гигагерцовую сетку и способна обеспечить 60 полноценных дуплексных канала в диапазоне C и 52 полноценных дуплексных канала в диапазоне L, опять же оставив место еще и для 15 CWDM каналов (1270нм-1510нм, 1590нм, 1610нм);

Глава 2